Árvore B

Neste tutorial, você aprenderá o que é uma árvore B. Além disso, você encontrará exemplos funcionais de operação de pesquisa em uma árvore B em C, C ++, Java e Python.

A árvore B é um tipo especial de árvore de pesquisa de auto-equilíbrio em que cada nó pode conter mais de uma chave e pode ter mais de dois filhos. É uma forma generalizada da árvore de pesquisa binária.

Ela também é conhecida como árvore m-way com altura balanceada.

Árvore B

Por que B-tree?

A necessidade da árvore B surgiu com o aumento da necessidade de menos tempo no acesso à mídia de armazenamento físico como um disco rígido. Os dispositivos de armazenamento secundários são mais lentos com uma capacidade maior. Havia uma necessidade de tais tipos de estruturas de dados que minimizassem os acessos ao disco.

Outras estruturas de dados, como árvore de pesquisa binária, árvore avl, árvore vermelha e preta, etc, podem armazenar apenas uma chave em um nó. Se você tiver que armazenar um grande número de chaves, a altura dessas árvores se tornará muito grande e o tempo de acesso aumentará.

No entanto, a árvore B pode armazenar muitas chaves em um único nó e pode ter vários nós filhos. Isso diminui a altura significativamente, permitindo acessos mais rápidos ao disco.

Propriedades da árvore B

  1. Para cada nó x, as chaves são armazenadas em ordem crescente.
  2. Em cada nó, existe um valor booleano x.leaf que é verdadeiro se x for uma folha.
  3. Se n for a ordem da árvore, cada nó interno pode conter no máximo n - 1 chaves junto com um ponteiro para cada filho.
  4. Cada nó, exceto root, pode ter no máximo n filhos e pelo menos n / 2 filhos.
  5. Todas as folhas têm a mesma profundidade (ou seja, altura-h da árvore).
  6. A raiz tem pelo menos 2 filhos e contém no mínimo 1 chave.
  7. Se n ≧ 1, então para qualquer B-tree chave n-de altura h e um grau mínimo t ≧ 2, .h ≧ logt (n+1)/2

Operações

Procurando

Pesquisar um elemento em uma árvore B é a forma generalizada de pesquisar um elemento em uma árvore de pesquisa binária. As etapas a seguir são seguidas.

  1. Começando pelo nó raiz, compare k com a primeira chave do nó.
    Se k = the first key of the node, retornar o nó e o índice.
  2. Se k.leaf = true, retornar NULL (ou seja, não encontrado).
  3. Se k < the first key of the root node, pesquise o filho esquerdo desta chave recursivamente.
  4. Se houver mais de uma chave no nó atual e k> the first key, compare k com a próxima chave no nó.
    If k < next key, pesquise o filho esquerdo desta chave (isto é, k encontra-se entre a primeira e a segunda chave).
    Caso contrário, procure o filho certo da chave.
  5. Repita os passos 1 a 4 até que a folha seja alcançada.

Exemplo de pesquisa

  1. Vamos procurar a chave k = 17na árvore abaixo do grau 3. Árvore B
  2. k não é encontrado na raiz, portanto, compare-o com a chave raiz. k não foi encontrado no nó raiz
  3. Desde então k> 11, vá para o filho certo do nó raiz. Vá para a subárvore certa
  4. Compare k com 16. Já que k> 16, compare k com a próxima tecla 18. Compare com as teclas da esquerda para a direita
  5. Uma vez que k < 18, k está entre 16 e 18 anos. Pesquisa na criança direita de 16 ou na criança esquerda de 18 anos. K encontra-se entre 16 e 18
  6. k é encontrado. k é encontrado

Algoritmo para pesquisar um elemento

 BtreeSearch(x, k) i = 1 while i ≦ n(x) and k ≧ keyi(x) // n(x) means number of keys in x node do i = i + 1 if i n(x) and k = keyi(x) then return (x, i) if leaf (x) then return NIL else return BtreeSearch(ci(x), k) 

Para saber mais sobre as diferentes operações de árvore B, visite

  • Inserção na árvore B
  • Exclusão na árvore B

Exemplos de Python, Java e C / C ++

Python Java C C ++
# Searching a key on a B-tree in Python # Create node class BTreeNode: def __init__(self, leaf=False): self.leaf = leaf self.keys = () self.child = () class BTree: def __init__(self, t): self.root = BTreeNode(True) self.t = t # Print the tree def print_tree(self, x, l=0): print("Level ", l, " ", len(x.keys), end=":") for i in x.keys: print(i, end=" ") print() l += 1 if len(x.child)> 0: for i in x.child: self.print_tree(i, l) # Search key def search_key(self, k, x=None): if x is not None: i = 0 while i x.keys(i)(0): i += 1 if i  = 0 and k(0)  = 0 and k(0)  x.keys(i)(0): i += 1 self.insert_non_full(x.child(i), k) # Split def split(self, x, i): t = self.t y = x.child(i) z = BTreeNode(y.leaf) x.child.insert_key(i + 1, z) x.keys.insert_key(i, y.keys(t - 1)) z.keys = y.keys(t: (2 * t) - 1) y.keys = y.keys(0: t - 1) if not y.leaf: z.child = y.child(t: 2 * t) y.child = y.child(0: t - 1) def main(): B = BTree(3) for i in range(10): B.insert_key((i, 2 * i)) B.print_tree(B.root) if B.search_key(8) is not None: print("Found") else: print("Not found") if __name__ == '__main__': main()   
 // Searching a key on a B-tree in Java public class BTree ( private int T; // Node creation public class Node ( int n; int key() = new int(2 * T - 1); Node child() = new Node(2 * T); boolean leaf = true; public int Find(int k) ( for (int i = 0; i < this.n; i++) ( if (this.key(i) == k) ( return i; ) ) return -1; ); ) public BTree(int t) ( T = t; root = new Node(); root.n = 0; root.leaf = true; ) private Node root; // Search key private Node Search(Node x, int key) ( int i = 0; if (x == null) return x; for (i = 0; i < x.n; i++) ( if (key < x.key(i)) ( break; ) if (key == x.key(i)) ( return x; ) ) if (x.leaf) ( return null; ) else ( return Search(x.child(i), key); ) ) // Splitting the node private void Split(Node x, int pos, Node y) ( Node z = new Node(); z.leaf = y.leaf; z.n = T - 1; for (int j = 0; j < T - 1; j++) ( z.key(j) = y.key(j + T); ) if (!y.leaf) ( for (int j = 0; j = pos + 1; j--) ( x.child(j + 1) = x.child(j); ) x.child(pos + 1) = z; for (int j = x.n - 1; j>= pos; j--) ( x.key(j + 1) = x.key(j); ) x.key(pos) = y.key(T - 1); x.n = x.n + 1; ) // Inserting a value public void Insert(final int key) ( Node r = root; if (r.n == 2 * T - 1) ( Node s = new Node(); root = s; s.leaf = false; s.n = 0; s.child(0) = r; Split(s, 0, r); insertValue(s, key); ) else ( insertValue(r, key); ) ) // Insert the node final private void insertValue(Node x, int k) ( if (x.leaf) ( int i = 0; for (i = x.n - 1; i>= 0 && k  = 0 && k x.key(i)) ( i++; ) ) insertValue(x.child(i), k); ) ) public void Show() ( Show(root); ) // Display private void Show(Node x) ( assert (x == null); for (int i = 0; i < x.n; i++) ( System.out.print(x.key(i) + " "); ) if (!x.leaf) ( for (int i = 0; i < x.n + 1; i++) ( Show(x.child(i)); ) ) ) // Check if present public boolean Contain(int k) ( if (this.Search(root, k) != null) ( return true; ) else ( return false; ) ) public static void main(String() args) ( BTree b = new BTree(3); b.Insert(8); b.Insert(9); b.Insert(10); b.Insert(11); b.Insert(15); b.Insert(20); b.Insert(17); b.Show(); if (b.Contain(12)) ( System.out.println("found"); ) else ( System.out.println("not found"); ) ; ) ) 
// Searching a key on a B-tree in C #include #include #define MAX 3 #define MIN 2 struct BTreeNode ( int val(MAX + 1), count; struct BTreeNode *link(MAX + 1); ); struct BTreeNode *root; // Create a node struct BTreeNode *createNode(int val, struct BTreeNode *child) ( struct BTreeNode *newNode; newNode = (struct BTreeNode *)malloc(sizeof(struct BTreeNode)); newNode->val(1) = val; newNode->count = 1; newNode->link(0) = root; newNode->link(1) = child; return newNode; ) // Insert node void insertNode(int val, int pos, struct BTreeNode *node, struct BTreeNode *child) ( int j = node->count; while (j> pos) ( node->val(j + 1) = node->val(j); node->link(j + 1) = node->link(j); j--; ) node->val(j + 1) = val; node->link(j + 1) = child; node->count++; ) // Split node void splitNode(int val, int *pval, int pos, struct BTreeNode *node, struct BTreeNode *child, struct BTreeNode **newNode) ( int median, j; if (pos> MIN) median = MIN + 1; else median = MIN; *newNode = (struct BTreeNode *)malloc(sizeof(struct BTreeNode)); j = median + 1; while (j val(j - median) = node->val(j); (*newNode)->link(j - median) = node->link(j); j++; ) node->count = median; (*newNode)->count = MAX - median; if (pos val(node->count); (*newNode)->link(0) = node->link(node->count); node->count--; ) // Set the value int setValue(int val, int *pval, struct BTreeNode *node, struct BTreeNode **child) ( int pos; if (!node) ( *pval = val; *child = NULL; return 1; ) if (val val(1)) ( pos = 0; ) else ( for (pos = node->count; (val val(pos) && pos> 1); pos--) ; if (val == node->val(pos)) ( printf("Duplicates are not permitted"); return 0; ) ) if (setValue(val, pval, node->link(pos), child)) ( if (node->count < MAX) ( insertNode(*pval, pos, node, *child); ) else ( splitNode(*pval, pval, pos, node, *child, child); return 1; ) ) return 0; ) // Insert the value void insert(int val) ( int flag, i; struct BTreeNode *child; flag = setValue(val, &i, root, &child); if (flag) root = createNode(i, child); ) // Search node void search(int val, int *pos, struct BTreeNode *myNode) ( if (!myNode) ( return; ) if (val val(1)) ( *pos = 0; ) else ( for (*pos = myNode->count; (val val(*pos) && *pos> 1); (*pos)--) ; if (val == myNode->val(*pos)) ( printf("%d is found", val); return; ) ) search(val, pos, myNode->link(*pos)); return; ) // Traverse then nodes void traversal(struct BTreeNode *myNode) ( int i; if (myNode) ( for (i = 0; i count; i++) ( traversal(myNode->link(i)); printf("%d ", myNode->val(i + 1)); ) traversal(myNode->link(i)); ) ) int main() ( int val, ch; insert(8); insert(9); insert(10); insert(11); insert(15); insert(16); insert(17); insert(18); insert(20); insert(23); traversal(root); printf(""); search(11, &ch, root); )
// Searching a key on a B-tree in C++ #include using namespace std; class TreeNode ( int *keys; int t; TreeNode **C; int n; bool leaf; public: TreeNode(int temp, bool bool_leaf); void insertNonFull(int k); void splitChild(int i, TreeNode *y); void traverse(); TreeNode *search(int k); friend class BTree; ); class BTree ( TreeNode *root; int t; public: BTree(int temp) ( root = NULL; t = temp; ) void traverse() ( if (root != NULL) root->traverse(); ) TreeNode *search(int k) ( return (root == NULL) ? NULL : root->search(k); ) void insert(int k); ); TreeNode::TreeNode(int t1, bool leaf1) ( t = t1; leaf = leaf1; keys = new int(2 * t - 1); C = new TreeNode *(2 * t); n = 0; ) void TreeNode::traverse() ( int i; for (i = 0; i traverse(); cout << " " 
 search(k); ) void BTree::insert(int k) ( if (root == NULL) ( root = new TreeNode(t, true); root->keys(0) = k; root->n = 1; ) else ( if (root->n == 2 * t - 1) ( TreeNode *s = new TreeNode(t, false); s->C(0) = root; s->splitChild(0, root); int i = 0; if (s->keys(0) C(i)->insertNonFull(k); root = s; ) else root->insertNonFull(k); ) ) void TreeNode::insertNonFull(int k) ( int i = n - 1; if (leaf == true) ( while (i>= 0 && keys(i)> k) ( keys(i + 1) = keys(i); i--; ) keys(i + 1) = k; n = n + 1; ) else ( while (i>= 0 && keys(i)> k) i--; if (C(i + 1)->n == 2 * t - 1) ( splitChild(i + 1, C(i + 1)); if (keys(i + 1) insertNonFull(k); ) ) void TreeNode::splitChild(int i, TreeNode *y) ( TreeNode *z = new TreeNode(y->t, y->leaf); z->n = t - 1; for (int j = 0; j keys(j) = y->keys(j + t); if (y->leaf == false) ( for (int j = 0; j C(j) = y->C(j + t); ) y->n = t - 1; for (int j = n; j>= i + 1; j--) C(j + 1) = C(j); C(i + 1) = z; for (int j = n - 1; j>= i; j--) keys(j + 1) = keys(j); keys(i) = y->keys(t - 1); n = n + 1; ) int main() ( BTree t(3); t.insert(8); t.insert(9); t.insert(10); t.insert(11); t.insert(15); t.insert(16); t.insert(17); t.insert(18); t.insert(20); t.insert(23); cout << "The B-tree is: "; t.traverse(); int k = 10; (t.search(k) != NULL) ? cout << endl << k << " is found" : cout << endl << k << " is not Found"; k = 2; (t.search(k) != NULL) ? cout << endl << k << " is found" : cout << endl << k << " is not Found"; ) 

Pesquisando Complexidade na Árvore B

Pior caso, complexidade de tempo: Θ(log n)

Complexidade de tempo médio do caso: Θ(log n)

Melhor caso, complexidade de tempo: Θ(log n)

Complexidade média do espaço do case: Θ(n)

Pior caso, complexidade do espaço: Θ(n)

Aplicativos de árvore B

  • bancos de dados e sistemas de arquivos
  • para armazenar blocos de dados (mídia de armazenamento secundária)
  • indexação multinível

Artigos interessantes...